
MIT 18.211: COMBINATORIAL ANALYSIS

FELIX GOTTI

Lecture 27: Adjacency Matrices and The Matrix-Tree Theorem

The Adjacency Matrix. A helpful way to represent a graph G is by using a matrix
that encodes the adjacency relations of G. This matrix is called the adjacency matrix
of G and facilitates the use of algebraic tools to better understand graph theoretical
aspects. In the first part of this lecture, we provide a couple of applications of the
adjacency matrix representation.

Definition 1. Let G be a multigraph with V (G) = [n]. Then the adjacency matrix A
of G is defined as follows:

• if G is undirected, then Ajk is the number of edges between j and k, and

• if G is directed, then Ajk is the number of edges from j to k.

We observe that the adjacency matrix of any undirected multigraph is symmetric.
However, this is not always the case for the adjacency matrix of a directed multigraph.
As we proceed to show, adjacency matrices can be used to compute number of walks
in a graph.

Proposition 2. Let G be a graph (directed or undirected) on [n] with adjacency ma-
trix A. For any j, k ∈ [n] and ` ∈ N, there are A`

jk walks of length ` from j to k.

Proof. We proceed by induction on `. If ` = 1, then Ajk is the number of edges from j
to k, which is the number of walks of length 1 from j to k. Assume the statement of
the proposition holds for ` ∈ N, and fix two vertices j and k of G. Set B = A`. By
the induction hypothesis, for any v ∈ V (G) there are B`

jv walks of length ` from j to v
and by the definition of A there are Avk walks of length 1 (that is, edges) from v to k.
As every walk of length ` + 1 from j to k can be obtained by concatenating, for some
v ∈ [n], a walk of length ` from j to v and a walk of length 1 (an edge) from v to k,
the number of walks of length ` + 1 from j to k is

n∑
v=1

BjvAvk = (BA)jk = (A`A)jk = A`+1
jk ,

which concludes the proof. �

In addition, we can use the adjacency matrix to check whether the corresponding
graph is connected. The following proposition shows how to do this.
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Proposition 3. 1 Let G be a simple graph on [n], and let A be the adjacency matrix
of G. Then G is connected if and only if all the entries of (In + A)n−1 are positive.

Proof. We know that G is connected if and only if any two distinct vertices j and k
of G are connected by a path (of length at most n − 1), which happens if and only if
A`

j,k > 0 for some ` ∈ [n− 1]. Therefore the statement of the proposition follows from
the following (Newton-Binomial) identity:

(In + A)n−1 =
n−1∑
`=0

(
n− 1

`

)
A`.

�

The Matrix-Tree Theorem. Our next goal is to introduce another important matrix
related to a given directed graph G, the incidence matrix, and use it to provide a
formula for the number of spanning trees of G. This formula, in turns, will allow us to
prove the Matrix-Tree Theorem, which expresses the number of spanning trees of an
(undirected graph) as a determinant of certain matrix.

Let G be a directed graph. In this lecture, we say that the underlying graph of G
is the graph we obtain from G by ignoring the orientation of the edges. A spanning
tree of a directed graph G is a subgraph T such that the underlying graph of T is a
spanning tree of the underlying graph of G.

Definition 4. Let G be a directed graph with V (G) = {v1, . . . , vm} and E(G) =
{e1, . . . , en}. The incidence matrix of G is the m × n matrix A with Aij = 1 (resp.,
Aij = −1) if the edge ej starts (resp., ends) at vi and with Aij = 0 if ej is not connected
to vi.

Theorem 5. Let G be a connected directed graph (without loops), and let A be the
incidence matrix of G. If A0 is the matrix obtained from A by removing the last row,
then det(A0A

T
0 ) is the number of spanning trees of G.

Proof. Since G is connected, m− 1 ≤ n. Let B be an (m− 1)× (m− 1) submatrix of
A0, and let G′ be the subgraph of G with V (G′) = V (G) and whose edges correspond
to the columns of B. We claim that G′ is a spanning tree of G if and only if | detB| = 1
and that, otherwise, detB = 0. We proceed by induction on |V (G)| ∈ N≥2.

If |V (G)| = 2, then G′ consists of exactly one edge and so it is a spanning tree of G,
while B ∈ {(1), (−1)} and so | detB| = 1. Now assume that our claim holds for any
directed graph with m−1 vertices (with m ≥ 3), and suppose that V (G) = {v1, . . . , vm}
and E(G) = {e1, . . . , en}. Let B and G′ be as we have described before. We split the
rest of the proof into two cases.

1Because of time-constrains, this proposition was not covered in class, but I have included here to
provide further applications of the adjacency matrix representation of a graph.
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Case 1: There exists i ∈ [n − 1] such that indegG′vi + outdegG′vi = 1. This implies
that there is exactly one nonzero entry (either 1 or −1) in the i-th row of B. Let
ej be the edge connected to vi in G′. If we compute detB expanding along the i-th
row of B, then we obtain that | detB| = | detB′|, where B′ is the submatrix of B
obtained by eliminating the i-th row and the column corresponding to ej. It follows
by the induction hypothesis that detB′ is either 1 or −1 if and only if G′ \ {vi} is a
spanning tree of G \ {v}. As indegG′vi + outdegG′vi = 1, this happens if and only if G′

is a spanning tree of G. Similarly, the induction hypothesis allows us to deduce that
detB = 0 if and only if G′ is not a spanning tree of G.

Case 2: indegG′vi+outdegG′vi 6= 1 for any i ∈ [m−1]. Since |V (G)| = m and |E(G′)| =
m − 1, the graph G′ must have a vertex vj such that indegG′vj + outdegG′vj = 0. In
particular, G′ is not a spanning tree of G (as it is not even a tree itself). If j ≤ m− 1,
then B has a row full of zeros and so detB = 0. Otherwise, j = n and, therefore,
every column of B has exactly one entry −1, one entry 1, and the rest of the entries
are zeros. This last statement implies that the addition of all the row vectors of B is
the zero vector. In particular, the rows of B are linearly dependent, which implies that
detB = 0.

Now we can use our already-proved claim in tandem with the Binet-Cauchy Formula
to complete the proof. It follows from the Binet-Cauchy Formula that

(0.1) det(A0A
T
0 ) =

∑
(detB)2,

where the sum runs over all (m − 1) × (m − 1) submatrices B of A0. By our claim,
the spanning trees of G correspond to submatrices B with detB ∈ {±1}, and the
determinant of the rest of the (m− 1)× (m− 1) submatrices of A0 is zero. Hence the
identity (0.1) implies that G contains exactly det(A0A

T
0 ) spanning trees. �

We are in a position to prove that Matrix-Tree Theorem.

Theorem 6. Let U be a simple (undirected graph) with V (U) = {v1, . . . , vm}. Let L
be the (m− 1)× (m− 1) matrix defined by

Lij =

 deg vi if i = j
−1 if i 6= j and vivj ∈ E(U)
0 otherwise.

for all i, j ∈ [m− 1]. Then the number of spanning trees of U is detL.

Proof. Let G be the directed graph that we obtain from U by replacing each edge of U
by two arrows, one in each direction. Let A be the incidence matrix of G, and let A0

be the matrix we obtain from A by removing the last row. We claim that A0A
T
0 = 2L.

Set M = A0A
T
0 and observe that

Mij = Ai1Aj1 + Ai2Aj2 + · · ·+ AinAjn,
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where n = |E(G)|. When i = j, the summand AikAik contributes with 1 to Mii if and
only if the edge of G determined by the k-th column of A is incident to vi. Therefore
Mii = indegGvi + outdegGvi = 2 degU vi = 2Lii. On the other hand, if i 6= j, then
AikAjk contributes with −1 to Mij if and only if the edge corresponding to the k-
th column of A connects vi and vj, which happens exactly for two indices k. Thus,
Mij = −2 = 2Lij if vivj ∈ E(U). Otherwise, there are no edges connecting vi and vj
in U (or in G) and so Mij = 0 = 2Lij. Hence A0A

T
0 = M = 2L, as claimed. Therefore

2m−1 detL = det(2L) = det(A0A
T
0 ),

which is, by virtue of Theorem 4, the number of spanning trees of G. Since each
spanning tree of U gives rise to exactly 2m−1 spanning trees of G, we conclude that
detL is the number of spanning trees of U . �

Practice Exercises

Exercise 1. Let G be a directed graph such that |E(G)| = |V (G)| − 1. If indeg v +
outdeg v 6= 1 for all v ∈ V (G), argue that G has an isolated vertex.

Exercise 2. Use the Matrix-Tree Theorem to rediscover that the number of spanning
trees of Kn is nn−2.
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