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FELIX GOTTI

LECTURE 27: ADJACENCY MATRICES AND THE MATRIX-TREE THEOREM

The Adjacency Matrix. A helpful way to represent a graph G is by using a matrix
that encodes the adjacency relations of G. This matrix is called the adjacency matrix
of G and facilitates the use of algebraic tools to better understand graph theoretical
aspects. In the first part of this lecture, we provide a couple of applications of the
adjacency matrix representation.

Definition 1. Let G be a multigraph with V(G) = [n]. Then the adjacency matriz A
of G is defined as follows:

e if G is undirected, then Aj; is the number of edges between j and k, and
o if G is directed, then Aj; is the number of edges from j to k.

We observe that the adjacency matrix of any undirected multigraph is symmetric.
However, this is not always the case for the adjacency matrix of a directed multigraph.
As we proceed to show, adjacency matrices can be used to compute number of walks
in a graph.

Proposition 2. Let G be a graph (directed or undirected) on [n] with adjacency ma-
triv A. For any j,k € [n| and € N, there are Aﬁk walks of length  from j to k.

Proof. We proceed by induction on £. If ¢ = 1, then A;;, is the number of edges from j
to k, which is the number of walks of length 1 from j to k. Assume the statement of
the proposition holds for ¢ € N, and fix two vertices j and k of G. Set B = A’. By
the induction hypothesis, for any v € V(G) there are va walks of length ¢ from j to v
and by the definition of A there are A,; walks of length 1 (that is, edges) from v to k.
As every walk of length ¢ + 1 from j to k can be obtained by concatenating, for some
v € [n], a walk of length ¢ from j to v and a walk of length 1 (an edge) from v to k,
the number of walks of length ¢+ 1 from 5 to k is

> BjAu = (BA)j = (A"A)j = AL,
v=1

which concludes the proof. O

In addition, we can use the adjacency matrix to check whether the corresponding

graph is connected. The following proposition shows how to do this.
1



2 F. GOTTI

Proposition 3. ' Let G be a simple graph on [n], and let A be the adjacency matriz
of G. Then G is connected if and only if all the entries of (I, + A)"! are positive.

Proof. We know that GG is connected if and only if any two distinct vertices j and k
of G are connected by a path (of length at most n — 1), which happens if and only if
A?k > 0 for some ¢ € [n — 1]. Therefore the statement of the proposition follows from
the following (Newton-Binomial) identity:

n—1 — n—1 ¢
(In+ A" =>" ;A
=0
O

The Matrix-Tree Theorem. Our next goal is to introduce another important matrix
related to a given directed graph G, the incidence matrix, and use it to provide a
formula for the number of spanning trees of G. This formula, in turns, will allow us to
prove the Matrix-Tree Theorem, which expresses the number of spanning trees of an
(undirected graph) as a determinant of certain matrix.

Let G be a directed graph. In this lecture, we say that the underlying graph of G
is the graph we obtain from G by ignoring the orientation of the edges. A spanning
tree of a directed graph G is a subgraph 7' such that the underlying graph of T is a
spanning tree of the underlying graph of G.

Definition 4. Let G be a directed graph with V(G) = {v1,...,v,} and E(G) =
{e1,...,en}. The incidence matriz of G is the m x n matrix A with A;; = 1 (resp.,
A;; = —1) if the edge e; starts (resp., ends) at v; and with A;; = 0 if e; is not connected
to v;.

Theorem 5. Let G be a connected directed graph (without loops), and let A be the
incidence matriz of G. If Ay is the matriz obtained from A by removing the last row,
then det(AgAL) is the number of spanning trees of G.

Proof. Since G is connected, m — 1 < n. Let B be an (m — 1) X (m — 1) submatrix of
Ap, and let G’ be the subgraph of G with V(G’) = V(G) and whose edges correspond
to the columns of B. We claim that G’ is a spanning tree of G if and only if | det B| = 1
and that, otherwise, det B = 0. We proceed by induction on |V (G)| € Nxo.

If [V(G)| = 2, then G’ consists of exactly one edge and so it is a spanning tree of G,
while B € {(1),(—1)} and so |det B|] = 1. Now assume that our claim holds for any
directed graph with m—1 vertices (with m > 3), and suppose that V(G) = {v1,..., v}
and E(G) = {e1,...,e,}. Let B and G’ be as we have described before. We split the
rest of the proof into two cases.

1Because of time-constrains, this proposition was not covered in class, but I have included here to
provide further applications of the adjacency matrix representation of a graph.
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Case 1: There exists i € [n — 1] such that indeg.,v; + outdegsv; = 1. This implies
that there is exactly one nonzero entry (either 1 or —1) in the i-th row of B. Let
e; be the edge connected to v; in G'. If we compute det B expanding along the i-th
row of B, then we obtain that |det B| = |det B’|, where B’ is the submatrix of B
obtained by eliminating the i-th row and the column corresponding to e;. It follows
by the induction hypothesis that det B’ is either 1 or —1 if and only if G’ \ {v;} is a
spanning tree of G'\ {v}. As indeg.v; + outdeg,v; = 1, this happens if and only if G’
is a spanning tree of (G. Similarly, the induction hypothesis allows us to deduce that
det B = 0 if and only if G’ is not a spanning tree of G.

Case 2: indegg,v;+outdegqv; # 1 for any i € [m—1]. Since |V(G)| = m and |E(G")| =
m — 1, the graph G’ must have a vertex v; such that indegqv; + outdeg,v; = 0. In
particular, G’ is not a spanning tree of G (as it is not even a tree itself). If j <m —1,
then B has a row full of zeros and so det B = 0. Otherwise, j = n and, therefore,
every column of B has exactly one entry —1, one entry 1, and the rest of the entries
are zeros. This last statement implies that the addition of all the row vectors of B is

the zero vector. In particular, the rows of B are linearly dependent, which implies that
det B = 0.

Now we can use our already-proved claim in tandem with the Binet-Cauchy Formula
to complete the proof. It follows from the Binet-Cauchy Formula that

(0.1) det(AgAf) = (det B)?,

where the sum runs over all (m — 1) x (m — 1) submatrices B of Ay. By our claim,
the spanning trees of G correspond to submatrices B with det B € {#1}, and the
determinant of the rest of the (m — 1) x (m — 1) submatrices of Ay is zero. Hence the
identity (0.1) implies that G contains exactly det(AyAZ) spanning trees. O

We are in a position to prove that Matrix-Tree Theorem.

Theorem 6. Let U be a simple (undirected graph) with V(U) = {v1,...,vn}. Let L
be the (m — 1) x (m — 1) matriz defined by

degv; ifi =7
L=< —1 if i # j and viv; € E(U)
0 otherwise.

for alli,j € [m — 1]. Then the number of spanning trees of U is det L.

Proof. Let G be the directed graph that we obtain from U by replacing each edge of U
by two arrows, one in each direction. Let A be the incidence matrix of G, and let Aq
be the matrix we obtain from A by removing the last row. We claim that AgAL = 2L.
Set M = AgAf and observe that

Mij = AinAji + ApAjp + - + AinAjn,
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where n = |E(G)|. When ¢ = j, the summand A;, A;; contributes with 1 to M;; if and
only if the edge of G determined by the k-th column of A is incident to v;. Therefore
M;; = indeg.v; + outdeg,v; = 2deg; v; = 2L;. On the other hand, if ¢ # j, then
AipAji contributes with —1 to M;; if and only if the edge corresponding to the k-
th column of A connects v; and v;, which happens exactly for two indices k. Thus,
M;; = =2 = 2L;; if vjv; € E(U). Otherwise, there are no edges connecting v; and v;
in U (or in G) and so M;; = 0 = 2L;;. Hence AgAL = M = 2L, as claimed. Therefore

2™t det L = det(2L) = det(AgAD),

which is, by virtue of Theorem 4, the number of spanning trees of G. Since each
spanning tree of U gives rise to exactly 2™~ ! spanning trees of G, we conclude that
det L is the number of spanning trees of U. 0

PrACTICE EXERCISES

Exercise 1. Let G be a directed graph such that |E(G)| = |[V(G)| — 1. If indegv +
outdegv # 1 for all v € V(G), argue that G has an isolated vertez.

Exercise 2. Use the Matriz-Tree Theorem to rediscover that the number of spanning
trees of K, is n" 2.
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